DOCSIS 3.1 Basics

OFDM BASICS
- **Orthogonal Frequency Division Multiplexing**
 - OFDM is a transmission technique that consists of multiplexing multiple individual Sub-carriers with precise frequency spacing.
 - For DOCSIS 3.1, these Sub-carriers are QAM modulated.
 - Orthogonality enables Sub-carriers to be closely spaced together, without interfering with each other.
 - Precise control of Spectrum usage
- **OFDM is used in other transmission technologies:** Wireless LAN, LTE, Digital Broadcasting DAB/DVB, DSL

OFDM Sub-Carriers
- Multiple OFDM Sub-carriers can be packed close together, without interfering with each other.
- Sub-carriers have precise frequency spacing
- Much more spectrum control:
 - 25 kHz or 50 kHz Sub-carriers
 - Sub-carriers are grouped to form an OFDM channel that can be from 24 to 192 MHz wide

MULTIPLE OFDM SUB-CARRIERS
- OFDM PHY Channel consists of multiplexed Sub-carriers
 - Can be from 24 to 192 MHz wide
 - Sub-carriers are individually configurable
 - 25 kHz or 50 kHz Sub-carriers
 - Modulation order: QAM-256, QAM-512, QAM-1024, QAM-4096
 - Sub-carriers can be On or Off depending on:
 - Spectrum availability: co-existence with legacy services
 - Plant conditions
 - Noise disturbance, such as LTE interference

LDPC
- **Low Density Parity Check**
 - Advanced FEC technology which provides performance close to the Shannon Theoretical Limit
 - Uses frequency and time interleaving for robustness against interferers and bursts
 - Greater spectral efficiency

SPECTRUM and CAPACITY
- **Backwards compatibility support of DOCSIS 3.0 bonded channels**
- Time and frequency methods are used to support multi-user transmission and for backwards compatibility with 0.0 US channel bonding
- More efficient US bandwidth

RF TABLE
- **Parameter**
 - **Value**
 - Pre-EQ
 - Post-EQ
 - Symbol

SPECTRUM and CAPACITY
- **Throughput (bps)**
 - **Spectrum (MHz)**
 - **Equivalent # of Channels**
 - **Modulation QAM-64**
 - **QAM-256**
 - **QAM-1024**
 - **QAM-2048**
 - **QAM-4096**

HIGHER ORDER QAM
- **DOCSIS 3.1 supports multiple modulation profiles:** base modulation and higher modulation profiles
- **Different profiles can be used depending on customer line quality**
- **Higher quality lines can utilize higher modulation profiles**
- **Dynamic adaptation to line conditions**
 - When an impairment appears, the affected OFDM Sub-carrier can downshift to a lower order modulation to help ensure robust, error-free transmission

- **DOCSIS 3.0 bonded channels**
 - 4 to 8 bonded DOCSIS 3.0 channels
 - 1 to 2+ DOCSIS 3.1 OFDM channels

OFDM Channel Capacity
- **Channel Capacity = Spectral Efficiency x Channel Bandwidth**